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Motivating System Needs For 

Power Electronics
• Greater Efficiency with reduced Size, Cost and Weight

• Applications Segmented By Voltage and Current Ratings

• Small Scale Power Supplies (man) to Vehicle Traction 
(air, sea or land) to Power Distribution Systems (grid)

• At Core: Systems Need Switches (transistors) and 
flyback Diodes (fast)
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System Efficiency Losses

60W inverter losses on a 

1200W solar array is 

equivalent to 

19% vs 20% efficiency

Inverter Resistive and 

Switching Losses:

Normally-off Transistor

Fast Recovery Diode

Energy for Cooling:

High Temperature Operation

Storage: 

Round-trip Losses

© GaN Devices



Today’s Power Grid

Problems:

• Not user friendly

• No plug-and-play interface 

• Large-scale integration 
of Distributed Renewable 
Energy Resource (DRER) 
would cause system 
collapse due to:

• Lack of management system

• Lack of energy storage

Gas station

Power plantPower plant

Substation



IEM: Intelligent Energy Management 

IFM: Intelligent Fault Management         
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DRER: Distributed Renewable Energy Resource

DESD: Distributed Energy Storage Device 
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Technology Path

Conventional Transformer

Solid State Transformer (SST)

12kV AC 

480V AC[ 60Hz ]

[ 10-15 kHz ]

IEM

AC

AC

G

SS

G

SS

+

-

Inverter

3Φ (typ.)

Si ?

SiC ?

GaN ?

Leverage 

SiC MOSFET

Technology

- John Palmour in Breakout -



Technical Development Program Linkages



Comparison of Power Densities

Hybrid Vehicle Inverter

20kW – 120 kW

< 0.1 m3

Silicon IGBT Based

Currently Water Cooled

Transformer Breaker

Power Distribution

20kVA – 120 kVA

~ 1 m3

All Passive – No Communication, 

Control or Dispatch

Highly Efficient



Why Anything but Silicon?

• Size: Limit to Current Rating Leads to Large Area 
Devices, Lower Frequency and Overall Weight 

• Efficiency: Resistive and Switching Losses Potentially 
Less with SiC or GaN Devices

• Temperature: Larger Bandgap Energy Allows Higher-
Temperature Operation Leading to System Efficiency

• Why Now?: Emergence of SiC and GaN Materials for 
Optoelectronic Applications Provides Unique Opportunity 
for Advancement in Power Electronics

• Gallium Nitride: Direct Wide Bandgap; Wurtzite (polar) 
Crystal Structure, AlGaN/GaN Heterostructures, good 
Electronic Transport Properties,  …



Periodic Table and 

Wide Bandgap Semiconductors

Silicon

Microprocessors

Moore’s Law

Power Controllers

GaAs

Mobile Phones

Wireless

GaN & SiC

LEDs

Blue Lasers

Power Electronics



Silicon Carbide and Gallium Nitride 

Wide Bandgap Semiconductors
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Most Wide Bandgap Semiconductors have a Hexagonal Structure

Most III-V Semiconductors have Zincblende Structure 



Comparison of Semiconductor Materials

Bandgap Energy (eV)

Dielectric Constant

Breakdown Field (MV/cm)

Electron Mobility (cm2/Vs)

Thermal Conductivity (W/mK)

Saturated Electron Velocity (cm/s)

Combined Figure of Merit

KthemevsEc
2

Silicon

1.12

11.9

0.25

1500

150

1.0x107

1 

4H-SiC

3.26

10.1

2.2

1000

490

2.0x107

286

GaN

(Epitaxial)

3.4

9

2.3

1250

130

2.2x107

102

Ex: L. Tolbert, et.al. “Power Electronics for Distributed Energy Systems (ORLN/TM – 2005/230)

Problems: 1) What is Device Meaning of the Combined Figure of Merit ?

2) Evolution of Measured Material Properties with 

Advancement in Materials Technology (Ec, Kth, me, …)



Figures of Merit

Combined Figure of Merit (General Assessment)

kthemevsEc
2

Keyes Figure of Merit   (Power Density & Speed)

kth √[c vs / (4p es)]

Baliga Figure of Merit    (Resistive Losses)

emeEc
3

Baliga High Frequency Figure of Merit 

meEc
2 (Switching Losses)

R. W. Keyes, "Figure of Merit for Semiconductors for High Speed Switches,“

Proc. IEEE, vol. 60, pp. 225-232, 1972 

B. J. Baliga, "Semiconductors for High-Voltage, Vertical Channel Field-Effect Transistors,"

J.Appl.Phys., vol. 53, no. 3, pp. 1759-1764, 1982 

B.J. Baliga, “Power semiconductor device figure of merit for high – frequency applications,” 

IEEE Electron Device Lett., vol. 10, pp. 455-457, 1989.



Resistive Loss in Power Rectifiers

• Minimize Series 

Resistance Loss at  

Voltage Rating

• Assume Series 

Resistance Dominated by 

n- Drift Region (Low 

Contact Resistance)

• From Device Model 

Resistive Loss/

Joule Heating

Breakdown

Voltage

n+

n-

Ohmic

Schottky

3

24

cEe

BVRon



me

Mobility at Drift Region Doping Levels

NOT Values for Undoped Material 

BFM



GaN Laser Diodes:

Lateral Growth Reduces Crystal Defects

Davis, et.al.

MaskedUnMasked

Laser Diode Lifetimes > 1000 hrs with Low Defect GaN



Ndis=2x107 cm-2 Ndis=4x108 cm-2Ndis=3x108 cm-2Ndis=2x108 cm-2

250-mm-thick
free-standing

HVPE GaN

10-mm-thick
HVPE GaN

3-mm-thick 3-mm-thick

sapphire sapphire6H SiC
buffer buffer

G. Brandes, IS on Bulk Nitrides, Sept. 2005, Bremen, Germany

Micro-morphology and dislocation density

HVPE

Ammonothermal

High Pressure

HVPE MOCVD MOCVD



Thermal Conductivity of Low Defect 

Bulk GaN by 3-ω Method
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♦ NCSU/Kyma bulk measurements

Typical heteroepi dislocation densities

Kyma bulk SI-GaN

Solution growth GaN
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♦ NCSU/Kyma bulk measurements

Typical heteroepi dislocation densities

Kyma bulk SI-GaN

Solution growth GaN
 

C. Mion, NC State University  (2005)

CL Imaging of Defects

ρ= ~107 cm-2



GaN for Power Electronics

GaN as material for high-speed and high-power applications

BFM – minimized resistive losses [ εμEc
3 ]

BHFFM – minimized switching losses ( μEc
2 ]

JFM – minimized switching delay [ (vsatEc)
2 ]

Silicon 4H-SiC GaN

(epi)

GaN

(bulk)

Eg (eV) 1.12 3.26 3.4 3.4

Diel. Constant 11.9 10.1 9 9

Kth (W/mK) 150 490 130 230

Ec (MV/cm) 0.3 2.2 2 3.3

2.7 (exp)

vsat (x1E7 cm/s) 1 2 3 3

mobility (cm2/Vs) 1350 900 1150 1150

BFM (rel) 1 223 190 850

BHFFM (rel) 1 45 36 98

JFM (rel) 1 215 400 1090

Low

Resistive

Loss

Low

Switching

Loss



Metamorphic Quasi-Bulk GaN

• HVPE for GaN Boule 
Synthesis: NH3, Ga, HCl

• Wafering by slicing and 
polishing

• Defect density reduction with 
increased thickness: as low as 
mid-105/cm2

• Orientation controlled by 
wafering direction

Substrate

Nucleation

Quasi-bulk

HVPE

Boule

Wafering

Boule

Polar Cut

Non – Polar

Wafering

[1120] or

[1-100][0001]



Substrate Series Conductivity

• n-ohmic ~10-6 Ωcm2

• Drift <10-3 Ωcm2 @ 1kV

• substrate 100 μm

(target) 2x1018 cm-3 n-type

500 cm2/Vs mobility

6x10-5 Ωcm2

• Need: Thin, highly doped, highly conductive substrates

n+

n-

Ohmic

Schottky
drift

substrate

contact



Nominal GaN MOS Power Transistor and 

Materials Development Issues

ACCUMULATION-MODE 

Vertical IG-HFET 

N- DRIFT REGION

P- SHIELDING REGION

N+ SOURCE

P+

N+ SUBSTRATE

DRAIN

SOURCE

AlGaN  Strain Dielectric

GATE

Low Defect GaN Substrate

Drift Region Power Limit

2DEG Fabrication & Epitaxy

Materials Focus / Problem

III-N MOS Interface

Structures Dielectric



Lateral GaN MOS Power Transistor and 

Materials Development Issues

Enhancement-mode Lateral 

MOS-HFET 

GaN BUFFER 

LAYER

SUBSTRATE

SOURCE

AlGaN  2DEG

GATE

Buffer Layer Defects and Leakage

2DEG Fabrication & Epitaxy

Materials Focus / Problem

MOS Interface & Structures Low-k 

Dielectric

DRAIN

NUCLEATION LAYERS

Gate Dielectric

Recess Etching

Silicon, Silicon Carbide, Sapphire



GaN Dielectric Interface – Fab Process
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La2O3 (MBE) on GaN

• Deposition of GaN MOS Dielectric

• Consideration: Structure, Electron 

Energy and Thermal Stability

• Crystal Growth on III-Nitride Surface: 

Ga2O3 Interlayer



Summary
• Wide bandgap semiconductors opportunity in Power Systems

- „Last mile‟ of Electric Power Systems

- High Voltage Transmission and Distribution 

- Renewable Energy Generation

- Smarter Reactive & Resistive Loads

• Properties of WBGS advantageous in efficient power conversion

• Defect Density Key Issue in Wide Bandgap Semiconductors

• Gate Dielectrics for MOS applications

• Focus on GaN and SiC in Breakouts:  John Palmour and Keith Evans
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Questions?




